1   /*
2    * Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
3    * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4    *
5    * This code is free software; you can redistribute it and/or modify it
6    * under the terms of the GNU General Public License version 2 only, as
7    * published by the Free Software Foundation.
8    *
9    * This code is distributed in the hope that it will be useful, but WITHOUT
10   * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12   * version 2 for more details (a copy is included in the LICENSE file that
13   * accompanied this code).
14   *
15   * You should have received a copy of the GNU General Public License version
16   * 2 along with this work; if not, write to the Free Software Foundation,
17   * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18   *
19   * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20   * or visit www.oracle.com if you need additional information or have any
21   * questions.
22   */
23  
24  /*
25   * @test
26   * @bug 4851638 4939441
27   * @summary Tests for {Math, StrictMath}.hypot
28   * @author Joseph D. Darcy
29   */
30  
31  import sun.misc.DoubleConsts;
32  import sun.misc.FpUtils;
33  
34  public class HypotTests {
35      private HypotTests(){}
36  
37      static final double infinityD = Double.POSITIVE_INFINITY;
38      static final double NaNd      = Double.NaN;
39  
40      /**
41       * Given integers m and n, assuming m < n, the triple (n^2 - m^2,
42       * 2mn, and n^2 + m^2) is a Pythagorean triple with a^2 + b^2 =
43       * c^2.  This methods returns a long array holding the Pythagorean
44       * triple corresponding to the inputs.
45       */
46      static long [] pythagoreanTriple(int m, int n) {
47          long M = m;
48          long N = n;
49          long result[] = new long[3];
50  
51  
52          result[0] = Math.abs(M*M - N*N);
53          result[1] = Math.abs(2*M*N);
54          result[2] = Math.abs(M*M + N*N);
55  
56          return result;
57      }
58  
59      static int testHypot() {
60          int failures = 0;
61  
62          double [][] testCases = {
63              // Special cases
64              {infinityD,         infinityD,              infinityD},
65              {infinityD,         0.0,                    infinityD},
66              {infinityD,         1.0,                    infinityD},
67              {infinityD,         NaNd,                   infinityD},
68              {NaNd,              NaNd,                   NaNd},
69              {0.0,               NaNd,                   NaNd},
70              {1.0,               NaNd,                   NaNd},
71              {Double.longBitsToDouble(0x7FF0000000000001L),      1.0,    NaNd},
72              {Double.longBitsToDouble(0xFFF0000000000001L),      1.0,    NaNd},
73              {Double.longBitsToDouble(0x7FF8555555555555L),      1.0,    NaNd},
74              {Double.longBitsToDouble(0xFFF8555555555555L),      1.0,    NaNd},
75              {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL),      1.0,    NaNd},
76              {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL),      1.0,    NaNd},
77              {Double.longBitsToDouble(0x7FFDeadBeef00000L),      1.0,    NaNd},
78              {Double.longBitsToDouble(0xFFFDeadBeef00000L),      1.0,    NaNd},
79              {Double.longBitsToDouble(0x7FFCafeBabe00000L),      1.0,    NaNd},
80              {Double.longBitsToDouble(0xFFFCafeBabe00000L),      1.0,    NaNd},
81          };
82  
83          for(int i = 0; i < testCases.length; i++) {
84              failures += testHypotCase(testCases[i][0], testCases[i][1],
85                                        testCases[i][2]);
86          }
87  
88          // Verify hypot(x, 0.0) is close to x over the entire exponent
89          // range.
90          for(int i = DoubleConsts.MIN_SUB_EXPONENT;
91              i <= DoubleConsts.MAX_EXPONENT;
92              i++) {
93              double input = FpUtils.scalb(2, i);
94              failures += testHypotCase(input, 0.0, input);
95          }
96  
97  
98          // Test Pythagorean triples
99  
100         // Small ones
101         for(int m = 1; m < 10; m++) {
102             for(int n = m+1; n < 11; n++) {
103                 long [] result = pythagoreanTriple(m, n);
104                 failures += testHypotCase(result[0], result[1], result[2]);
105             }
106         }
107 
108         // Big ones
109         for(int m = 100000; m < 100100; m++) {
110             for(int n = m+100000; n < 200200; n++) {
111                 long [] result = pythagoreanTriple(m, n);
112                 failures += testHypotCase(result[0], result[1], result[2]);
113             }
114         }
115 
116         // Approaching overflow tests
117 
118         /*
119          * Create a random value r with an large-ish exponent.  The
120          * result of hypot(3*r, 4*r) should be approximately 5*r. (The
121          * computation of 4*r is exact since it just changes the
122          * exponent).  While the exponent of r is less than or equal
123          * to (MAX_EXPONENT - 3), the computation should not overflow.
124          */
125         java.util.Random rand = new java.util.Random();
126         for(int i = 0; i < 1000; i++) {
127             double d = rand.nextDouble();
128             // Scale d to have an exponent equal to MAX_EXPONENT -15
129             d = FpUtils.scalb(d, DoubleConsts.MAX_EXPONENT
130                                  -15 - FpUtils.ilogb(d));
131             for(int j = 0; j <= 13; j += 1) {
132                 failures += testHypotCase(3*d, 4*d, 5*d, 2.5);
133                 d *= 2.0; // increase exponent by 1
134             }
135         }
136 
137         // Test for monotonicity failures.  Fix one argument and test
138         // two numbers before and two numbers after each chosen value;
139         // i.e.
140         //
141         // pcNeighbors[] =
142         // {nextDown(nextDown(pc)),
143         // nextDown(pc),
144         // pc,
145         // nextUp(pc),
146         // nextUp(nextUp(pc))}
147         //
148         // and we test that hypot(pcNeighbors[i]) <= hypot(pcNeighbors[i+1])
149         {
150             double pcNeighbors[] = new double[5];
151             double pcNeighborsHypot[] = new double[5];
152             double pcNeighborsStrictHypot[] = new double[5];
153 
154 
155             for(int i = -18; i <= 18; i++) {
156                 double pc = FpUtils.scalb(1.0, i);
157 
158                 pcNeighbors[2] = pc;
159                 pcNeighbors[1] = FpUtils.nextDown(pc);
160                 pcNeighbors[0] = FpUtils.nextDown(pcNeighbors[1]);
161                 pcNeighbors[3] = FpUtils.nextUp(pc);
162                 pcNeighbors[4] = FpUtils.nextUp(pcNeighbors[3]);
163 
164                 for(int j = 0; j < pcNeighbors.length; j++) {
165                     pcNeighborsHypot[j]       =       Math.hypot(2.0, pcNeighbors[j]);
166                     pcNeighborsStrictHypot[j] = StrictMath.hypot(2.0, pcNeighbors[j]);
167                 }
168 
169                 for(int j = 0; j < pcNeighborsHypot.length-1; j++) {
170                     if(pcNeighborsHypot[j] >  pcNeighborsHypot[j+1] ) {
171                         failures++;
172                         System.err.println("Monotonicity failure for Math.hypot on " +
173                                           pcNeighbors[j] + " and "  +
174                                           pcNeighbors[j+1] + "\n\treturned " +
175                                           pcNeighborsHypot[j] + " and " +
176                                           pcNeighborsHypot[j+1] );
177                     }
178 
179                     if(pcNeighborsStrictHypot[j] >  pcNeighborsStrictHypot[j+1] ) {
180                         failures++;
181                         System.err.println("Monotonicity failure for StrictMath.hypot on " +
182                                           pcNeighbors[j] + " and "  +
183                                           pcNeighbors[j+1] + "\n\treturned " +
184                                           pcNeighborsStrictHypot[j] + " and " +
185                                           pcNeighborsStrictHypot[j+1] );
186                     }
187 
188 
189                 }
190 
191             }
192         }
193 
194 
195         return failures;
196     }
197 
198     static int testHypotCase(double input1, double input2, double expected) {
199         return testHypotCase(input1,input2, expected, 1);
200     }
201 
202     static int testHypotCase(double input1, double input2, double expected,
203                              double ulps) {
204         int failures = 0;
205         if (expected < 0.0) {
206             throw new AssertionError("Result of hypot must be greater than " +
207                                      "or equal to zero");
208         }
209 
210         // Test Math and StrictMath methods with no inputs negated,
211         // each input negated singly, and both inputs negated.  Also
212         // test inputs in reversed order.
213 
214         for(int i = -1; i <= 1; i+=2) {
215             for(int j = -1; j <= 1; j+=2) {
216                 double x = i * input1;
217                 double y = j * input2;
218                 failures += Tests.testUlpDiff("Math.hypot", x, y,
219                                               Math.hypot(x, y), expected, ulps);
220                 failures += Tests.testUlpDiff("Math.hypot", y, x,
221                                               Math.hypot(y, x ), expected, ulps);
222 
223                 failures += Tests.testUlpDiff("StrictMath.hypot", x, y,
224                                               StrictMath.hypot(x, y), expected, ulps);
225                 failures += Tests.testUlpDiff("StrictMath.hypot", y, x,
226                                               StrictMath.hypot(y, x), expected, ulps);
227             }
228         }
229 
230         return failures;
231     }
232 
233     public static void main(String argv[]) {
234         int failures = 0;
235 
236         failures += testHypot();
237 
238         if (failures > 0) {
239             System.err.println("Testing the hypot incurred "
240                                + failures + " failures.");
241             throw new RuntimeException();
242         }
243     }
244 
245 }